United Silicon Carbide, Inc. offers the 3rd generation of high performance SiC Merged-PiN-Schottky (MPS) diodes. With zero reverse recovery charge and 175°C maximum junction temperature, these diodes are ideally suited for high frequency and high efficiency power systems with minimum cooling requirements.

Features
- 175°C maximum operating junction temperature
- Easy paralleling
- Extremely fast switching not dependent on temperature
- No reverse or forward recovery
- Enhanced surge current capability, MPS structure
- Excellent thermal performance, Ag sintered
- 100% UIS tested
- AEC-Q101 qualified

Typical Applications
- Power converters
- Industrial motor drives
- Switching-mode power supplies
- Power factor correction modules

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC blocking voltage</td>
<td>(V_R)</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Repetitive peak reverse voltage, (T_J = 25°C)</td>
<td>(V_{RRM})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Surge peak reverse voltage</td>
<td>(V_{RSM})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Maximum DC forward current</td>
<td>(I_F)</td>
<td>(T_C = 160.7°C)</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>Non-repetitive forward surge current sine halfwave</td>
<td>(I_{FSM})</td>
<td>(T_C = 25°C, t_p = 10ms)</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_C = 110°C, t_p = 10ms)</td>
<td>63</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive forward surge current sine halfwave, (D = 0.1)</td>
<td>(I_{FRM})</td>
<td>(T_C = 25°C, t_p = 10ms)</td>
<td>31.8</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_C = 110°C, t_p = 10ms)</td>
<td>18.6</td>
<td>A</td>
</tr>
<tr>
<td>Non-repetitive peak forward current</td>
<td>(I_{F,max})</td>
<td>(T_C = 25°C, t_p = 10\mu s)</td>
<td>525</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_C = 110°C, t_p = 10\mu s)</td>
<td>525</td>
<td>A</td>
</tr>
<tr>
<td>(i^2t) value</td>
<td>(\int i^2dt)</td>
<td>(T_C = 25°C, t_p = 10ms)</td>
<td>24.5</td>
<td>A²s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_C = 110°C, t_p = 10ms)</td>
<td>19.5</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_C = 25°C)</td>
<td>136</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_C = 160.7°C)</td>
<td>13</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{J,max})</td>
<td>(T_C = 25°C)</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_C = 160.7°C)</td>
<td>13</td>
<td>°C</td>
</tr>
<tr>
<td>Operating and storage temperature</td>
<td>(T_{J}, T_{STG})</td>
<td></td>
<td>-55 to 175</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperatures, wavesoldering only allowed at leads</td>
<td>(T_{sold})</td>
<td>1.6mm from case for 10s</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Rev. B, January 2018

For more information go to www.unitedsic.com
Electrical Characteristics

$T_J = +25°C$ unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>$I_F = 5A, T_J = 25°C$</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 5A, T_J = 150°C$</td>
<td>-</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 5A, T_J = 175°C$</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>$V_R = 1200V, T_P = 25°C$</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 1200V, T_J = 175°C$</td>
<td>-</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>400</td>
</tr>
<tr>
<td>Total capacitive charge</td>
<td>Q_C</td>
<td>$V_R = 800V$</td>
<td>27</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Capacitance stored energy</td>
<td>E_C</td>
<td>$V_R = 800V$</td>
<td>8</td>
<td>μJ</td>
</tr>
</tbody>
</table>

(1) Q_C is independent on T_J, di/dt, and I_F as shown in the application note USCI_AN0011.

Thermal characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance, junction - case</td>
<td>R_{juc}</td>
<td></td>
<td>0.85</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Typical Performance

![Figure 1 Typical forward characteristics](image1)

![Figure 2 Typical forward characteristics in surge current](image2)

Rev. B, January 2018

For more information go to www.unitedsic.com
Figure 3 Typical reverse characteristics

Figure 4 Power dissipation

Figure 5 Diode forward current

Figure 6 Maximum transient thermal impedance

Rev. B, January 2018

For more information go to www.unitedsic.com
Gen-III | 5A - 1200V SiC Schottky Diode | UJ3D1205TS

Datasheet

Figure 7 Capacitance vs. reverse voltage at 1MHz

Figure 8 Typical capacitive charge vs. reverse voltage

Figure 9 Typical capacitance stored energy vs. reverse voltage

Rev. B, January 2018

For more information go to www.unitedsic.com
Disclaimer

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.
We are here for you. Addresses and Contacts.

Sales Germany & Austria
Geometrical sensors
Kurt Stritzelberger
Phone +49 89 374 288 87 22
kurt.stritzelberger@pewatron.com

Pressure sensors
Gerhard Vetter
Phone +49 89 374 288 87 26
gerhard.vetter@pewatron.com

Gas sensors and modules
Peter Felder
Phone +49 89 374 288 87 05
peter.felder@pewatron.com

Sales Switzerland & Liechtenstein
Basil Frei
Phone +41 44 877 35 18
basil.frei@pewatron.com

Sales International Key Accounts
Peter Felder
Phone +41 44 877 35 05
peter.felder@pewatron.com

Sales Other Countries / Product Management
Pressure Sensors
Philipp Kistler
Phone +41 44 877 35 03
philipp.kistler@pewatron.com

Power supplies
Sebastiano Leggio
Phone +41 44 877 35 06
sebastiano.leggio@pewatron.com

Accelerometers
Christoph Kleye
Phone +49 89 374 288 87 61
christoph.kleye@pewatron.com

Harald Thomas
Phone +49 89 374 288 87 23
harald.thomas@pewatron.com

Gas sensors
Dr. Thomas Clausen
Phone +41 44 877 35 13
thomas.clausen@pewatron.com

Linear position sensors
Eric Letsch
Phone +41 44 877 35 14
eric.letsch@pewatron.com

Flow / Level / Medical products
Dr. Adriano Pittarelli
Phone +49 89 374 288 87 67
adriano.pittarelli@pewatron.com

Drive technology
CH Postcode 5000 – 9999 / DE
Roman Homa
Phone +41 76 444 00 86
roman.homa@pewatron.com

Current sensors / Power solutions & Turkey
Osman Coban
Phone +49 89 374 288 87 65
osman.coban@pewatron.com

Drive technology
CH Postcode 1000 – 4999 / AT / IT / FR
Christian Mohrenstecher
Phone +41 76 444 57 93
christian.mohrenstecher@pewatron.com